 天元讲堂: New bounds for equiangular lines and spherical two-distance sets 報告題目：New bounds for equiangular lines and spherical two-distance sets 報告人：俞韋亘（Wei-Hsuan Yu, National Central University） 時間：2019年6月7日（星期五）10:30—11:30 地點：蘇州大學本部精正樓（數學樓）307   摘要：The set of points in a metric space is called an s-distance set if pairwise distances between these points admit only s distinct values. Two-distance spherical sets with the set of scalar products {α, -α}, α ∈ [0,1), are called equiangular. The problem of determining the maximal size of s-distance sets in various spaces has a long history in mathematics. We determine a new method of bounding the size of an s-distance set in two-point homogeneous spaces via zonal spherical functions. This method allows us to prove that the maximum size of a spherical two-distance set in R^n is n(n+1)/2 with possible exceptions for some n=(2k+1)^2?3, k∈N. We also prove the universal upper bound : 2n/3 a^2 for equiangular sets with α=1/a and, employing this bound, prove a new upper bound on the size of equiangular sets in an arbitrary dimension. Finally, we classify all equiangular sets reaching this new bound.   報告人主頁 http://w2.math.ncu.edu.tw/member/full/65     歡迎參加！ (數學科學學院)
 蘇大概況 教育教學 院部設置 科學研究 組織機構 合作交流 招生就業 公共服務     Copyright 苏州大学 2016, All Rights Reserved 苏州市十梓街1号 组织策划：校长办公室 苏ICP备-10229414  苏公网安备 32050802010530号  推薦使用IE8.0以上浏覽器，1280*760分辨率訪問本網